今晚看图中一肖一特33

新闻中心

News

高压电机的调速技术
发布时间:2019/12/13 阅读:3877

高压电机的调速技术

液力耦合器
在电机轴和负载轴之间加入叶轮,调节叶轮之间液体(一般为油)的压力,达到调节负载转速的目的。这种调速方法实质上是转差功率消耗型的做法,其主要缺点是随着转速下降效率越来越低、需要断开电机与负载进行安装、维护工作量大,过一段时间就需要对轴封、轴承等部件进行更换,现场一般较脏,显得设备档次低,属淘汰技术。

早期对调速技术比较感兴趣的厂家,或者是因为当初没有高压调速技术可以选择,或者是考虑到成本的因素,对液力耦合器有一些应用。如自来水公司的水泵、电厂的锅炉给水泵和引风机、炼钢厂的除尘风机等。如今,一些老的设备在改造中已经逐渐被高压变频替换掉。

高低高型变频器
变频器为低压变频器,采用输入降压变压器和输出升压变压器实现与高压电网和电机的接口,这是当时高压变频技术未成熟时的一种过渡技术。

由于低压变频器电压低,电流却不可能无限制的上升,限制了这种变频器的容量。由于输出变压器的存在,使系统的效率降低,占地面积增大;另外,输出变压器在低频时磁耦合能力减弱,使变频器在启动时带载能力减弱。对电网的谐波大,如果采用12脉冲整流可以减少谐波,但是满足不了对谐波的严格要求;输出变压器在升压的同时,对变频器产生dv/dt也同等放大,必须加装滤波器才能适用于普通电机,否则会产生电晕放电、绝缘损坏的情况。如果采用特殊的变频电机可以避免这种情况,但是就不如采用高低型的变频器了。

高低型变频器
变频器为低压变频器,输入侧采用变压器将高压变为低压,将高压电机换掉,采用特殊的低压电机,电机的电压水平多种多样,没有统一标准。

这种做法由于采用低压变频器,容量也比较小,对电网侧的谐波较大,可以采用12脉冲整流减少谐波,但是满足不了对谐波的严格要求。在变频器出现故障时,电机不能投入到工频电网运行,在有些不能停机的场合应用会有问题。另外,电机和电缆都要更换,工程量比较大。

串级调速变频器
将异步电机部分转子能量回馈至电网,从而改变转子滑差实现调速,这种调速方式采用可控硅技术,需要使用绕线式异步电动机,而如今工业现场几乎都采用鼠笼式异步电动机,更换电机非常麻烦。这种调速方式的调速范围一般在70%-95%左右,调速范围窄。可控硅技术容易造成对电网的谐波污染;随着转速的降低,电网侧功率因数也变低,需要采取措施补偿。其优点是变频部分容量较小,比其他高压交流变频调速技术成本稍低。

这种调速方式有一种变化形式,即内反馈调速系统,省却了逆变部分的变压器,将反馈绕组直接做在定子绕组里,这种做法要更换电机,其他方面的性能与串级调速接近。

串级调速电机受转子滑环的影响,不能做到很大功率,滑环维护工作量也大,属于七八十年代的落后技术,工业应用已经越来越少。

电流源型直接高压变频器
这种变频器,输入侧采用可控硅进行整流,采用电感储能,逆变侧用SGCT作为开关元件,为传统的两电平结构。由于器件的耐压水平有限,必须采用多个器件串联。器件串联是一种非常复杂的工程应用技术,理论上说可靠性很低,但有的公司可以做到产品化的地步。由于输出侧只有两个电平,电机承受的dv/dt较大,必须采用输出滤波器。电网侧的多脉冲整流器为可选件,用户需要针对自己的工厂情况提出要求。这种变频器的主要优点是不需要外加电路就可以将负载的惯性能量回馈到电网。
电流源型变频器的主要缺点是电网侧功率因数低,谐波大,而且随着工况的变化而变,不好补偿。

功率模块串联多电平变频器
这种变频器采用低压变频器串联的方式实现高压,是电压源型变频器。它的输入侧采用移相降压型变压器,实现18脉冲以上的整流方式,满足国际上对电网谐波的严格的要求。在带负载时,电网侧功率因数可达到95%以上。在输出侧采用多级PWM技术,dv/dt小,谐波少,满足普通异步电机的需要。可根据负载的需要设计变频器的输出电压,是解决6KV、10KV电机调速的较好办法。啊功率电路采用标准模块化设计,更换简单,所用器件在国内采购也比较容易。

这种变频器采用低压IGBT作为逆变元件,与采用高压IGBT的三电平变频器相比,功率元件数目较多,但技术上较成熟。与采用高压IGCT的三电平变频器相比,功率元件数目较多,但总元件数目却较少,因为IGCT需要非常复杂的辅助关断电路。

根据实际而定方式:电机容量大小与电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍.为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多种方式.有复杂有简单,价钱差异很大. 由于电压高,电流冲击大,电机制造必须满足过电压的要求,绝缘等级要求较高。